A robust fuzzy approach for gene expression data clustering

نویسندگان

چکیده

In the big data era, clustering is one of most popular mining method. Most algorithms have complications like automatic cluster number determination, poor precision, inconsistent various datasets and parameter-dependent, etc. A new fuzzy autonomous solution for named Meskat-Mahmudul (MM) algorithm was proposed to overcome complexity parameter-free determination accuracy. The finds out exact clusters based on average silhouette method in multivariate mixed attribute dataset, including real-time gene expression dataset missing values, noise, outliers. Extended K-Means (MMK) enhances algorithm, which serves purpose discovery runtime placement. Several validation methods are used evaluate certify optimum partitioning perfection. Some assess performance other terms time efficiency. Finally, were found superior over conventional algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fuzzy Approach for Clustering Gene Expression Time Series Data

Identifying groups of genes that manifest similar expression patterns is crucial in the analysis of gene expression time series data. Choosing a similarity measure to determine the similarity or distance between profiles is an important task. Time series expression experiments are used to study a wide range of biological systems. More than 80% of all time series expression datasets are short (8...

متن کامل

Gene Expression Data Clustering using a Fuzzy Link based Approach

There are many clustering algorithms for gene expression data in the literature that are robust against noise and outliers. The limitation with many of these algorithms is that they cannot identify the overlapping and intersecting clusters. This paper presents an algorithm for clustering gene expression data using the concepts of common neighbors and fuzzy clustering for detecting intersecting ...

متن کامل

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

A validation method for fuzzy clustering of gene expression data

Clustering is a key process in data mining for revealing structure and patterns in data. Fuzzy C-means (FCM) is a popular algorithm using a partitioning approach for clustering. One advantage of FCM is that it converges rapidly. In addition, using fuzzy sets to represent the degrees of cluster membership of each data point provides more information regarding relationships within the data than d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Soft Computing

سال: 2021

ISSN: ['1433-7479', '1432-7643']

DOI: https://doi.org/10.1007/s00500-021-06397-7